Minuscule posets from neighbourly graph sequences

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minuscule posets from neighbourly graph sequences

We begin by associating to any sequence of vertices in a simple graph X, here always assumed connected, a partially ordered set called a heap. This terminology was introduced by Viennot ([11]) and used extensively by Stembridge in the context of fully commutative elements of Coxeter groups (see [8]), but our context is more general and graph-theoretic. The heap of a sequence of vertices is that...

متن کامل

Posets from Admissible Coxeter Sequences

We study the equivalence relation on the set of acyclic orientations of an undirected graph Γ generated by source-to-sink conversions. These conversions arise in the contexts of admissible sequences in Coxeter theory, quiver representations, and asynchronous graph dynamical systems. To each equivalence class we associate a poset, characterize combinatorial properties of these posets, and in tur...

متن کامل

REES SHORT EXACT SEQUENCES OF S-POSETS

In this paper the notion of Rees short exact sequence for S-posets is introduced, and we investigate the conditions for which these sequences are left or right split. Unlike the case for S-acts, being right split does not imply left split. Furthermore, we present equivalent conditions of a right S-poset P for the functor Hom(P;-) to be exact.

متن کامل

Graph coloring and monotone functions on posets

Proof. We denote V -[p] = { 1 , . . . , p}, A(G) is the set of acyclic orientations of G and a(G) = IA(G)I is their number. An n-coloring of G, c: V---> [n] induces an acyclic orientation DceA(G) as follows: If [x,y]eE is an edge, where c(x) > c(y) then in Dc this edge is oriented from x to y. Every acyclic orientation D ~ A(G) defines a partial order on V, which we denote by i>o. If D e A(G), ...

متن کامل

rees short exact sequences of s-posets

in this paper the notion of rees short exact sequence for s-posets is introduced, and we investigate the conditions for which these sequences are left or right split. unlike the case for s-acts, being right split does not imply left split. furthermore, we present equivalent conditions of a right s-poset p for the functor hom(p;-) to be exact.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2003

ISSN: 0195-6698

DOI: 10.1016/s0195-6698(03)00056-8